July 11, 2025

UCLA Scientists Identify 4 Key Pathways to Alzheimer’s Disease

UCLA researchers have identified four diagnostic pathways to Alzheimer’s disease, showing how sequences of conditions, not just isolated risk factors, predict progression. Their findings may transform early detection and prevention approaches.

Researchers have identified sequential diagnostic patterns that may enhance early detection and improve strategies for disease prevention.

Researchers at UCLA Health have uncovered four distinct pathways through which Alzheimer’s disease can develop, based on a detailed analysis of electronic health records. This discovery sheds light on the ways the disease unfolds over time, emphasizing progressive patterns rather than isolated risk factors.


The findings, published in the journal eBioMedicine, are based on a long-term review of medical data from nearly 25,000 patients stored in the University of California Health Data Warehouse. To ensure the results applied broadly, the team also confirmed their conclusions using the All of Us Research Program, which reflects a wide range of demographics across the United States.


Unlike earlier studies that looked at risk factors in isolation, this approach tracked how various diagnoses appeared in sequence, highlighting step-by-step progressions that often lead to Alzheimer’s.

Multi-Step Trajectories Over Single Risk Factors

“We found that multi-step trajectories can indicate greater risk factors for Alzheimer’s disease than single conditions,” said first author Mingzhou Fu, a medical informatics pre-doctoral student at UCLA. “Understanding these pathways could fundamentally change how we approach early detection and prevention.”

The research identified four major trajectory clusters:


Mental health pathway: Psychiatric conditions leading to cognitive decline

Encephalopathy pathway: Brain dysfunction conditions that escalate over time

Mild cognitive impairment pathway: Gradual cognitive decline progression

Vascular disease pathway: Cardiovascular conditions that contribute to dementia risk

Each pathway showed distinct demographic and clinical characteristics, suggesting that different populations may be vulnerable to different progression routes.


The study found that approximately 26% of diagnostic progressions showed consistent directional ordering. For example, hypertension often preceded depressive episodes, which then increased Alzheimer’s risk.


“Recognizing these sequential patterns rather than focusing on diagnoses in isolation may help clinicians improve Alzheimer’s disease diagnosis,” said lead author Dr. Timothy Chang, assistant professor in Neurology at UCLA Health.


When validated in an independent population, these multi-step trajectories predicted Alzheimer’s disease risk more accurately than single diagnoses alone. This finding suggests that healthcare providers could use trajectory patterns for:


Enhanced risk stratification: Identifying high-risk patients earlier in disease progression

Targeted interventions: Interrupting harmful sequences before they advance

Personalized prevention: Tailoring strategies based on individual pathway patterns

The validation in the All of Us Research Program — a diverse, nationally representative cohort — confirmed that these trajectory patterns apply across different populations and demographics.

Research Methodology

The team analyzed 5,762 patients who contributed 6,794 unique Alzheimer’s progression trajectories. Using advanced computational methods, including dynamic time warping, machine learning clustering, and network analysis, researchers mapped the temporal relationships between diagnoses leading to Alzheimer’s disease.

https://scitechdaily.com/ucla-scientists-identify-4-key-pathways-to-alzheimers-disease/

No comments:

Post a Comment